

 .NET CODING STANDARDS & BEST PRACTICES

Version 1.1

November 7, 2007

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

2

CHANGE HISTORY

Date Version Author Change Description

6/27/06 .1 Hy Tran Initial Draft

8/8/06 .2 Doug Swingle Updated to reflect JUSTIS style and coding
standards book excerpts.

8/17/06 .3 David Mullings Revised & Reorganized

3/24/07 .4 David Mullings Additional guidelines added and document
revised.

04/02/07 .5 David Mullings Expanded section dealing with structuring
source code.

06/01/07 .6 Doug Swingle Added practices for working with SQL
Reporting.

06/11/07 .7 Bashir Mohammed Added Team Foundation Server best practices.

06/14/07 1.0 David Mullings Initial Release

11/07/07 1.1 David Mullings Modified Source Code Organization section.

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

3

Table of Contents

1 Introduction .. 6
2 Programming Standards ... 7

2.1 Primary Programming Language.. 7
2.2 Web Platform.. 7
2.3 Windows Application Platform .. 7
2.4 Database Operations ... 7
2.5 Coding Style ... 7
2.6 Keep it Simple, Stupid.. 8

3 Naming Convention and Standards .. 9
3.1 Use meaningful, descriptive words to name types.. 9
3.2 Use Pascal Case when naming types .. 9
3.3 Do not use using Hungarian notation ... 9
3.4 Do not use Camel Casing ... 9
3.5 Delineate class members from method members ... 10
3.6 Prefix the name of an Interface type with the letter “I” .. 10
3.7 Custom exception types should end with the word, Exception .. 10
3.8 Abstract types should end with the word, Base .. 10
3.9 Prefix Boolean variables and properties with the words “Can”, “Is” or “Has” 10
3.10 Do not include the parent class name within a property name ... 10
3.11 Common generic variable names.. 11
3.12 Common prefixes for Win Form controls... 11
3.13 Common prefixes for Web Form controls.. 12

4 Comments... 14
4.1 General Rules for Comments.. 14
4.2 Spaces and Indentation ... 14
4.3 File Header Comments ... 14
4.4 Method-Level Comments ... 15
4.5 Block-Level Comments.. 15
4.6 Statement -Level Comments... 16
4.7 Code Change Comments .. 16

5 Source Code Organization.. 18
5.1 Consider using the secondary drive for all your work.. 18
5.2 Follow the standard project file structure ... 18
5.3 How To: Create a new application projects.. 20

5.3.1 Step 1 – Create Root Folder.. 20
5.3.2 Step 2 – Create a Blank Solution .. 20
5.3.3 Step 3 – Add a Web Site to Your Solution ... 20
5.3.4 Step 4 – Add a Class Library to Your Solution .. 21
5.3.5 Step 5 – Add a Windows Form Project to Your Solution... 21

5.4 Code one class definition per source file .. 21
5.5 Name the file after the class.. 21
5.6 Organize types under the DCPretrial root namespace .. 22
5.7 Organize members within a class ... 22

6 Exception Handling Best Practices... 24
6.1 Derive custom exceptions from the PSAException type .. 24
6.2 Use Try blocks instead of On Error statements .. 24
6.3 Do not use exceptions to control execution flow.. 24
6.4 Throw Exceptions only when you need to.. 24

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

4

6.5 Order multiple Catch statements carefully ... 24
6.6 Re-throw exceptions caught in class libraries... 25
6.7 Write User Friendly Error Message.. 25
6.8 Protect again revealing sensitive data... 25
6.9 Keep unhandled exceptions from being displayed to end-users ... 26

7 Security Best Practices ... 28
7.1 Craft with security in mind ... 28
7.2 Never trust what you’ve been given ... 28
7.3 Be careful how and where you store connection strings... 28
7.4 Use your own credentials when connecting to databases ... 28
7.5 Use stored procedures to execute queries ... 28
7.6 Protect SQL Code from injection attacks ... 28
7.7 Use HtmlEncode to protect against Cross-site Scripting .. 29

8 Unit Testing Best Practices... 30
9 Team Foundation Server Source Control Best Practices & Guidance.. 31

9.1 Getting the latest version of source code .. 31
9.2 Files kept and not kept in source control .. 31
9.3 Checking out code for editing... 32
9.4 Checking in modified code... 33
9.5 Deleting code from Source Control .. 33
9.6 Sharing shelved code .. 34

9.6.1 Shelving working code ... 34
9.6.2 Un-shelving working code.. 34
9.6.3 Deleting shelved code... 35

10 General Coding Best Practices ... 36
10.1 Turn on Option Strict, Option Explicit and Option Compare for all projects............................... 36
10.2 Don’t declare multiple variables on the same line.. 36
10.3 Never define public instance fields... 36
10.4 Avoid having multiple statements on one line.. 37
10.5 Don’t code single-statement If blocks .. 37
10.6 Use the AndAlso and OrElse instead of the And and Or operators .. 37
10.7 Don’t compare Boolean types to true/false values ... 38
10.8 Use direct assignments to set Boolean types .. 38
10.9 Avoid the IIF function .. 38
10.10 Testing and comparing object types ... 39
10.11 Favor Select Case blocks to test for multiple values .. 39
10.12 Never code multiple statements on a Case block line... 39
10.13 Put most likely to occur condition at top of Select Case statement .. 40
10.14 Declare controlling variable in For and For each loops.. 40
10.15 Don’t use an array’s length property to control For loops.. 41
10.16 When to use For … Next and For Each …Next loops.. 41
10.17 Doing For loops when the controlling variable are not sequential ... 41
10.18 Use the & operator to concatenate strings .. 42
10.19 When to use char variables ... 42
10.20 Initialize string types to String.Empty .. 42
10.21 How to split long string expressions... 42
10.22 Looping over all the characters of a string.. 42
10.23 Avoid passing types by reference ... 43
10.24 Use method overloading to reduce boxing ... 44
10.25 Use method overloading to reduce the number of arguments... 45
10.26 Use method overloading rather than relying on optional parameters 45
10.27 Validate all arguments before using them .. 46
10.28 Have a single exit point for all methods ... 46
10.29 Use the Return keyword to return values from a method or property 47

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

5

10.30 Methods and properties that return strings ... 47
10.31 Use the Get-prefixed to name methods that return values .. 48
10.32 Get-prefixed methods matching property names.. 48
10.33 Set-prefixed methods.. 48
10.34 Consider using parentheses to return the results of an expression.. 49
10.35 Don’t use properties as methods or methods as properties. .. 49
10.36 Use Enums to return result status codes ... 50
10.37 Return Zero-element Arrays over Un-initialized arrays ... 50

11 ASP.Net Best Practices... 51
11.1 Use Model-View-Presenter Pattern .. 51
11.2 Validate input on both the client and server ... 51
11.3 Set the ViewStateUserKey property on all web pages ... 51
11.4 Redirect using Server.transfer or Server.Execute ... 51
11.5 Favor the ViewState dictionary over hidden fields... 51

12 Data Access Best Practices... 52
12.1 Access the database through the Agency’s Data Access Layer.. 52
12.2 Don’t use Datasets to pass data between application tiers.. 52
12.3 Data Reader vs. DataSet ... 52

13 SQL Reporting Best Practices .. 53
13.1 Report Standard Fonts .. 53
13.2 Report Margins... 53
13.3 Naming conventions ... 53
13.4 Using Reporting Services Embedded Code.. 54
13.5 Report Readability (for Summary Reports).. 54
13.6 Naming Data Sources and Data Sets .. 55
13.7 Deploying Reports.. 55
13.8 Use Visual SourceSafe ... 55
13.9 Use Shared Data Sources.. 56
13.10 Use Views and Stored Procedures .. 56
13.11 Create a backup of the Encryption Key .. 56
13.12 Review Reports Before Deploying ... 56
13.13 Use folders and Descriptions to Organize Reports ... 56
13.14 Assign Security at the Folder Level.. 56

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

6

1 INTRODUCTION

The coding standards and best practices outlined in this document reflect the current
practices and standards used by the Software Development Team to build and maintain
applications in support of PSA’s mission.

These standards and best practices are based upon industry recognized standards and are
intended to provide developers with practical guidance, dos and don’ts, pitfalls, naming
conventions and styles, and recommendations for writing source code. This document,
however, is not a definitive, all inclusive guide, but a general introduction to some of the
more common rules to follow when constructing .Net source code. Software
development, after all, is both a skill and an art form. This document is intended to help
developers learn the techniques needed to practice this art form to the highest skill level
possible.

This document is based upon Practical Guidelines and Best Practices for Microsoft
Visual Basic and Visual C# Developers by Francesco Balena & Giuseppe Dimauro
(Microsoft Press, 2005). All agency developers should read the book in its entirety
because of it great wealth of practical information on how to write clean, efficient and
easily maintainable .Net source code.

Several of the recommended practices and standards made by Microsoft’s Pattern and
Practices Group have been adopted by the Agency and have been included in this
document as well.

It is expected that all code written by the Software Development Team and contractors
utilized by this agency conforms to the standards and best practices outlined within this
document. Because of such, this document also serves as the basis for conducting
periodic code reviews of source code to insure that what is develop for this Agency
represents the highest quality of software construction achievable.

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

7

2 PROGRAMMING STANDARDS

2.1 Primary Programming Language
Visual Basic.Net has been designated as the primary programming language for building
custom applications within PSA. Unless otherwise directed by the Software Architect, all
classes, components, code libraries, scripts, and server side code must be written in
Visual Basic.Net.

2.2 Web Platform
ASP.Net has been designated as the primary platform for building web-based
applications for PSA. All ASP.Net applications should use XHTML 1.0 Transitional as
their markup language, JavaScript/VBScript for client-side code, and Visual Basic.Net on
the server-side.

2.3 Windows Application Platform
Windows Form.Net has been designated as the primary platform for building windows-
based applications for PSA.

2.4 Database Operations
Stored procedures have been designated as the primary mechanism for storing, retrieving,
updating or deleting data contained within an agency database. Do not write In-Line or
Dynamic SQL code within classes, components, code libraries or scripts unless the
Software Architect has granted you permission to do so.

2.5 Coding Style
Source code should be written in a clear, concise and easy to follow manner. Large tasks
should be broken up into smaller, more modular and reusable units of work. Do not use
Spaghetti coding1 as this is evidence of a poor programming style and will make future
maintenance and debugging tasks harder.

1 Spaghetti code is described as “…a program's source code that is difficult to read and/or follow by a
human because of how the original programmer wrote the code. Spaghetti code is often not organized and
has portions of code that may belong at the bottom of the code at the top of the code or vice versa.
Spaghetti code may also skip to other portions of the code numerous times making it hard to track down
issues within the code. Finally, some users consider programs that contain several goto statements spaghetti
code because they have to try to follow each of the goto statements throughout the whole program.
Spaghetti code is considered bad practice because a program may be more prone to experience errors, and
if errors are experienced, it is more difficult to locate what is causing the error to occur. Spaghetti code can
be reduced by keeping your program organized, always commenting your code, and if possible, breaking
your code into sections.” Definition taken from http://www.computerhope.com/jargon/s/spaghett.htm .

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

8

2.6 Keep it Simple, Stupid
All things being equal, the simplest solution to a problem is the better one to utilize. In
other words, do not overly complicate a procedure by combining several coding
statements into one hard to decipher statement, or choose a solution just because it’s
novel, unique or demonstrates how smart you think you are. Also, do not incorporate
more technology than is truly needed to solve the problem. Do not add more layers, call
more routines, or otherwise complicate a task that can be solved rather simply without all
the extra overhead. The goal should always be to create the simplest and most elegant
solution to a problem. These types of routines always demonstrate great programming
ability and are the easiest to maintain and correct. Any code that appears overly
complicated will be rejected with instructions to simplify the code.

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

9

3 NAMING CONVENTION AND STANDARDS
3.1 Use meaningful, descriptive words to name types2
When naming classes, method, parameters and variables, select names that clearly reflect
the value that the variable/parameter is going to contain, the operation a given method is
going to perform or the object that a class represents. Do not use abbreviations unless the
abbreviation is universally recognizable. Also, do not use names that begin with numeric
or special characters.

3.2 Use Pascal Case3 when naming types
Public Class HelloWorld
 Public Sub SayHello(ByVal UserName As String)
 Dim HelloMessage As String = "Hello, " & UserName & ".
Welcome to my world!"
 ….
 End Sub
End Class

3.3 Do not use using Hungarian notation
The use of special prefix characters to identify the date type of a variable is no longer
considered good programming style and should not be used when developing code
libraries. The Agency will continue to support its use when naming Win and Web Form
controls as indicated in Sections 1.12 and 1.13 below.

'*** Wrong
Dim sClientName As String
Dim nClientID As Integer

'*** Right
Dim ClientName As String
Dim ClientID As Integer

3.4 Do not use Camel Casing4

While Microsoft is currently actively promoting the use of Camel Casing within .Net
source code, we have elected to not utilize this programming style within our source
code. The use of a single programming style and convention makes source code
debugging and maintenance simpler and easier.

2 In .Net, classes, methods, parameters, members and variables are all considered types.
3 Pascal Case – The first letter of all words are capitalized and all subsequent letters in the word appear in
lower case, i.e. ClientFirstName.
4 Camel Case is a style of programming where the first word of a type’s name appears solely in lower case
letters and every subsequent word begins with an upper case letter, i.e. clientFirstName.

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

10

3.5 Delineate class members from method members

Prefix class members with m_ to distinguish them from method members.

'*** Wrong
Dim ClientName As String
Dim ClientID As Integer

'*** Right
Dim m_ClientName As String
Dim m_ClientID As Integer

3.6 Prefix the name of an Interface type with the letter “I”

Public Interface IWidget
…
End Interface

3.7 Custom exception types should end with the word, Exception

Public Class DataAccessException

Inherits PSAException
 …
End Class

3.8 Abstract types should end with the word, Base

Public MustInherit Class PrismBase
 …
End Class

3.9 Prefix Boolean variables and properties with the words “Can”, “Is” or “Has”

Dim IsTrueName As Boolean
Dim CanUpdatePage As Boolean
Dim HasDrugTestRecords As Boolean

3.10 Do not include the parent class name within a property name

'*** Wrong
Client.ClientFirstName()

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

11

'*** Right
Client.FirstName()

3.11 Common generic variable names
Unless a variable represent key a data item, use the following naming convention when
you create generic variables involving the following types.

Object Type Variable Name
Controlling index in For loops indx, indy, indz
DB Connection Conn
DbCommand Cmd
DataReader Rdr
DataSet Ds
DataTable Dt
SQLParameter SqlParams

Public Overrides Function List(ByVal ClientImageID As Integer) As
DataTable
 Dim conn as new SQLConnection(ConnectionString)
 Dim cmd as new SQLCommand(cmd)

Dim dt As new DataTable
Dim rdr As new SqlReader

 Try
 cmd.Connection = connection
 cmd.CommandText = "gspClientPhotoList"
 cmd.CommandType = Data.CommandType.StoredProcedure
 cmd
 rdr = cmd.ExecuteReader()

 dt.Load(rdr)
 Catch ex As SqlException
 …
 Catch ex As Exception
 …
 End Try
 Return dt
End Function

3.12 Common prefixes for Win Form controls
Use the following prefix when naming objects of the indicated Win form control.

Control Prefix
Button cmd
Calender cal
Checkbox chk
CheckedListBox clt
DataGrid grd

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

12

Control Prefix
ComboBox (dropdownlistbox) cb
Hyperlink hyp
Image img
Label lbl
ListBox lst
RadioButton rb
RadioButtonlist rlst
Table tbl
TextBox txt
Toolbar tb
DataView gv
DetailView dv

3.13 Common prefixes for Web Form controls
Use the following prefix when naming objects of the indicated Web form control.

Prefix Type Prefix Type
adrot AdRotator mpag MultiPage
cmd Command/Button pnl Panel
cal Calendar phld PlaceHolder
chk CheckBox rb RadioButton
clst CheckedListBox rlst RadioButtonList
vacmp CompareValidator varng RangeValidator
ctrl Control vareg RegularExpressionValidator
crv CrystalReportViewer rep Repeater
dg DataGrid repi RepeaterItem
dgrc DataGridColumn vareq RequiredValidator
dgri DataGridItem tbl Table
dls DataList tcel TableCell
dlsi DataListItem trow TableRow
cbo ComboBox tab TabStrip
hyp HyperLink txt TextBox
img Image tba Toolbar
ibtn ImageButton tvw TreeView
lbl Label vasum ValidationSummary
lbtn LinkButton xml XML
lst ListBox xpwin XpWindow
lit Literal gv Gridview

3.14 Do not use .NET keywords as identifiers

The table below lists the keywords that should be avoided as identifiers.

abstract AddHandler AddressOf Alias And
AndAlso Ansi As Assembly Auto
Base bool Bolean break ByRef
Byte ByVal Call Case Catch
CBool CByte CChar CDate CDec

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

13

CDbl Char checked CInt Class
CLng CObj Const continue CSByte
CShort CSng CStr CType CUInteger
Declare Default Delegate Dim Do
Double Each Else ElseIf End
Enum Erase Error Eval Event
Exit explicit extends extern ExternalSource
False Finalize Finally fixed float
For foreach Friend Function Get
GetType Global Goto Handles If
Implements implicit Imports In Inherits
Instanceof int Integer Interface internal
Is IsFalse IsNot IsTrue Let
Lib Like lock Long Loop
Me Mod Module MustInherit MustOverride
My MyBase MyClass Namespace Narrowing
New Next Not Nothing NotInheritaable
NotOverridable null Object Of On
operator Option Optional Or OrElse
Out Overloads Overridable override Overrides
package ParamArray Params Partial Preserve
Private Property Protected Public RaiseEvent
ReadOnly ReDim ref Region Rem
Removehandler Resume Return sbyte sealed
Select Set Shadows Shared Short
Single sizeof stackalloc Static Step
Stop String struct Structure Sub
switch SyncLock Then This Throw
To True Try TryCast TypeOf
Uint Uinteger ulong ushort unchecked
Unicode unsafe Until using var
virtual void volatile When While
Widening With WithEvents WriteOnly Xor
Yield

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

14

4 COMMENTS
4.1 General Rules for Comments
All comments should be written in U.S. English using concise, but complete sentences.
Comments should also use the same level of indentation as the code block it is related to
and should immediately precede that code without any intervening blank lines.

For i As Integer = 0 To NameList.Length - 1
'Initialize the array elements.
NameList(i) = i

Next

4.2 Spaces and Indentation

• Use tabs instead of spaces to indent code.

• Use four spaces for each indenting level.

• Avoid two or more consecutive blank lines.

• Manually wrap lines that are longer then 80 characters.

• Break a long line after the comma but before an operator, if possible.

• Avoid wrapping a line in the middle of an expression, especially if in the middle
of a parenthesized expression.

• Indent all wrapped lines by one tab from the start of the first line.

• Leave one space before and after binary operators such as + and *.

Note: Typing CTRL+K, CTRL+D will automatically format your current
document for you.

4.3 File Header Comments
Each source file should contain a header comment block appropriate for the file type5
(sql, aspx, vb, etc…). The header comment block should include a copyright notice,
author’s name, purpose/description, creation date, $History$ VSS tag. Where appropriate
wrap the header comments block inside of #region tags so it can be easily collapsed.

#Region "File Header"
'--
'Name: Lockup.vb

5 Standard headers for common file types can be found in Visual Source Safe.

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

15

'Author: John Doe
'Created: June 15, 2006
'Description: DAL Component to encapsulate accessing the Lockup
' table in PRISM.
'
'© 1999-2006 DC Pretrial Services Agency. All rights reserved.
'--
'
'$History: $
'
'--
#End Region

4.4 Method-Level Comments
Use XML comments to document all major methods inside of .Net code libraries.

''' <summary>
''' Determine if the answer provided matches a given application
user's stored answer.
''' </summary>
''' <param name="ApplicationToken">Application's token.</param>
''' <param name="UserID">UserID of the user.</param>
''' <param name="Answer">User's anwer to the security question
posed.</param>
''' <returns>True if the answer matches, false
otherwise</returns>
''' <remarks></remarks>
Public Shared Function ValidUserSecurityAnswer(ByVal
ApplicationToken As Guid, ByVal UserID As String, ByVal Answer As
String) As Boolean

…
Dim RetValue As Boolean = False
…
Return RetValue

End Function

4.5 Block-Level Comments

Always descript what a block of statements does, but avoid obvious remarks. Ideally,
there should be a line of comments every four (4) to six (6) executable statements.

If RetValue = LogOutStatus.Success AndAlso WebContext() Then

'calling from http (asp.net) context, destroy forms
'authentication cookie.
FormsAuthentication.SignOut()
…

Else
'calling from a windows context - Do Nothing

End If

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

16

4.6 Statement -Level Comments
Avoid adding statement-level comments (that is, comments on the same line and to the
right of executable code), unless you are explaining a variable or argument.

'*** Wrong
newD = newD.AddTicks(myTicks) 'To get real date, we need to add
the number of ticks since 1/1/1601

'*** Right
Private _Ticket As FormsAuthenticationTicket 'ASP Generated
Authentication Ticket for user.

Private dbFirstName As String 'First name of Application User
retrieved from database.

4.7 Code Change Comments
Comments should be added to source code to indicate changes being made to the
original. The comments should indicate who is making the change, the date the change is
being made, W.O. #, a brief description of the change, and a start, obsolete, and end
indicator. Here the format to be followed:

‘ <Changer’s Name> - <Date of Change>: W.O. # , <brief description> - START6
‘ <Changer’s Name> - <Date of Change>: W.O. # , <brief description> - OBSOLETE7
‘ <Changer’s Name> - <Date of Change>: W.O. # , <brief description> - END

'JDOE - 08/12/2006: W.O. 1756 - Perform ActiveDirectory check on
internal users - START
If User.IsInternal AndAlso UserInActiveDirectory(User.Name) Then

...
Else

...
End If
'JDOE - 08/12/2006: W.O. 1756 - Perform ActiveDirectory check on
internal users - END

6 The start and end tags may be omitted when the change involves three (3) or less lines of code. In these
cases replace the START tag with “the following x number of lines”
7 OBSELETE should only be used when commenting out four (4) or more lines of code. Lines of codes
should be deleted from a source file unless you are absolutely certain that they will not need to be restored
at some point in the future.

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

17

NOTE: Code Change Comments along with any obsolete (commented out) code that
is more than 2 years old should be deleted from source code.

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

18

5 SOURCE CODE ORGANIZATION

5.1 Consider using the secondary drive for all your work
If your PC comes equipped with a secondary drive, consider using it to store your
documents and work files (source code, word documents, Visio diagrams, etc). This
ensures that all your work is saved whenever you re-image your PC or if the C drive ever
crashes.

5.2 Follow the standard project file structure
To ensure a consistent approach across all of our development efforts and to keep source
code and project files transportable across PC’s and developers, all development work
should be grouped together beneath a single root folder entitled D:\PSAProjects 8. Under
this single root folder you should then create one subfolder per application solution9 as
shown here:

D:\PSAProjects - Root container for all of PSA’s development work
 \AppSolution1 - Container folder for AppSolution1 project files
 \AppSolution2 - Container folder for AppSolution2 project files

For example:

 D:\PSAProjects
 \PRISM - All PRISM 2.x project files would go under here
 \PRISMJ - All PRISMJ project files would go under here
 \DMTS.NET - All DTMS project files would go under here
 \PRISM.NET - All PRISM 3 project files would go under here

Files pertaining to each application solution should then be structured according to the
following pattern:

o Source – container for various source code files that make up application
solution.

 SQLScripts - container for all SQL scripts related to this solution.

8 Please note the standard file structure organization may be altered to maintain backwards compatibility
with the existing PRISM 2.x application base library.
9 An application solution represents all the components used to build an application, i.e. ASP.NET files,
code libraries, and SQL Scripts. An Application project refers to the individual components within a
solution, i.e. an ASP.NET Website, Class Library, Windows Form App, etc.

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

19

 Tables – container for all table related objects. Each file should
relate to one table and contain all objects (keys, indices,
constraints, except triggers) belonging to that table.

 StoredProcs – container for all stored procedures definitions

 Functions – container for all function definitions

 Triggers – container for all triggers

 Libs – container for class libraries

 ClassLibrary1 – source code for ClassLibrary1

 ClassLibrary2 – source code for ClassLibrary2

 ClassLibrary3 – source code for ClassLibrary3

 Websites – container for asp.net applications

 WebApp1 – source code for WebApp1

 WebApp2 – source code for WebApp2

 WinApps – container for windows/wpf applications

 WinApp1 – source code for WinApp1

 WinApp1 – source code for WinApp2

 Reports – container for SQL Reporting Server rpt files

 Unit Tests - container for unit tests

 Bin - container for third-party binaries needed to execute application.

o Docs - container for project documentation. (Optional if docs are being stored
in SharePoint on the Project Team’s website).

o Installer - container for installer source code and binaries (optional)

o Builds - container for team build scripts (optional)

o Tests - container for test team test cases

 FunctionalTests

 PerformanceTests

 SecurityTest

Additional folders may be added or removed depending upon the nature and scope of the
development project.

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

20

5.3 How To: Create a new application projects.
The steps in this section outline how to create application projects that are optimized for
team development and for use with Team Foundation Server Source Control.

5.3.1 Step 1 – Create Root Folder
If you have not done so already, open Windows Explorer and create a root folder to hold
all of your development work. As noted in Section 5.2 above, this folder should be called
PSAProjects. For this walk through we will create it on the C: drive so that root folder
becomes C:\PSAProjects.

5.3.2 Step 2 – Create a Blank Solution
Next we create a blank solution that will be the container for all our source code.

1. On the File menu, point to New and then click Project.

2. Expand Other Project Types and select Visual Studio Solutions.

3. Select Blank Solution.

4. Give a name to your solution. Typically this will be the Application Project name
mention above, i.e. PRISM, DMTS, etc. For purposes of this How To we will use
AppSolution as the solution name.

5. Set the Location to C:\PSAProjects and then click OK.

This creates a C:\PSAProjects\AppSolution folder on your computer. Visual Studio adds
the solution (.sln) file and solution user options (.suo) file to this folder.

5.3.3 Step 3 – Add a Web Site to Your Solution
In this step, you add an ASP.NET Web site to your solution. If you’re not building a Web
application then you may skip this section.

1. In Solution Explorer, right-click AppSolution, point to Add, and then click New
Web Site.

2. In the Add New Web Site dialog box, leave the Location as File System, and the
Language as Visual Basic.

3. Set the Location directory to C:\PSAProjects\<<Solution
Name>>\Source\Websites\<<WebSite Name>>. For example,
C:\PSAProjets\AppSolution\source\SolutionWeb.

4. Click OK to close the Add New Web Site dialog box.

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

21

The new projects are added beneath the Source\WinApps folder.

5.3.4 Step 4 – Add a Class Library to Your Solution
If your application requires class libraries, add them as follows:

1. In Solution Explorer, right-click your AppSolution solution, point to Add, and
then click New Project.

2. Select Visual Basic as the project type and Class Library as the template.

3. Provide a name for your class library, set the Location to
C:\PSAProjects\AppSolution\Source\Libs, and then click OK.

The new projects are added beneath the Source\Lib folder. Repeat these steps for each
class library being added to your solution.

5.3.5 Step 5 – Add a Windows Form Project to Your Solution
In this step, you add a new Windows Forms project to your solution. If you’re not
building a Windows Application then you may skip this section.

1. In Solution Explorer, right-click Solution AppSolution, point to Add, and then
click New Project….

2. In the Add New Project dialog box, select Visual Basic as the project type and
Windows Application as the template.

3. Set the Location to C:\PSAProjects\MyApp\Source\WinApps directory.

4. Name your project.

5. Click OK to close the Add New Project dialog box and add your project.

The new projects are added beneath the Source\WinApps folder.

It is important that when adding new application projects to your solution that you set its
folder location to the appropriate folder location indicated in Section 5.2 above.

5.4 Code one class definition per source file
Each source file should only contain one class per file. Do not declare multiple classes
within the same source file unless the class is a subclass within the larger class or is a
support class that is used solely by the main class of the file.

5.5 Name the file after the class
The name of the source file should match the name of class with a .vb extension added to
the end.

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

22

5.6 Organize types under the DCPretrial root namespace
All types should belong to the DCPretrial root namespace using the following format:

DCPretrial.<Project Name>.TypeName.

Namespace DCPretrial.Prism
 Public Class ClientPhoto
 Inherits PrismBase
 Public Sub New()
 …
 End Sub
 End Class
End Namespace

The following table list several common namespaces that have already been designated
for use.

Namespace Description

DCPretrial.Common Contain common types that are common to all of the
Agency’s applications.

DCPretrial.Data Contains types used to connect to, execute queries
against, and return data from Agency databases.

DCPretrial.Security.Management Contains types used to administer the Enterprise
Security Management System.

DCPretrial.Security Contains types used to performed enterprise
authentication and identification of users.

DCPretrial.Utilities Contains utility routines that are reused by several
applications.

DCPretrial.Prism Contains type used for the Adult PRISM application.

DCPretrial.Logging Contains types used to handle application logging.

5.7 Organize members within a class

Group member definition according to their category and alphabetize them within their
respective groups and use a #region directive to collapse the member groups easily.

Always adopt the same order when defining members:

1. Event and delegate definition

2. Private and public fields declarations

3. Constructors

4. Instance public methods

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

23

5. Static public methods and properties

6. Methods in interfaces

7. Instance public properties

8. Private (helper) methods

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

24

6 EXCEPTION HANDLING BEST PRACTICES

6.1 Derive custom exceptions from the PSAException type
The PSAException class has been designed to provide central exception handling and
logging to a computer’s Event Log. Deriving all of PSA’s custom exception classes from
it will simplify exception handling routines and allow for future changes to be easily
propagated to all our applications.

Public Class DataAccessException
Inherits PSAException

 …
End Class

6.2 Use Try blocks instead of On Error statements
Use the Try-Catch-Finally block to handle exceptions in .Net source code instead using
the old VB6 style of On Error Goto or On Error Resume Next.

6.3 Do not use exceptions to control execution flow
Do not use exceptions as a means of controlling the flow of source code because they are
extremely time and resource-consuming. Consider having method return status code (e.g.
negative numbers or a null object reference) if you want control the flow of code based
upon the action of a particular method.

6.4 Throw Exceptions only when you need to
Throw an exception only if you want to be sure that client code doesn’t miss an error
condition. And in this case, always throw the most specific exception to the actual error
situation that has arisen.

6.5 Order multiple Catch statements carefully
When catching multiple exceptions within a try-catch block, always order the exceptions
being caught so that the most likely ones occur first and that specific exceptions are
caught before generic exceptions. Placing generic exceptions before more specific ones
will result in the more specific exceptions never been caught.

'*** Wrong
Try
 …
Catch ex As Exception
 …

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

25

Catch ex As SQLException '*** exception will never be caught.
 …
End Try

'*** Correct
Try
 …
Catch ex As SqlException
 …
Catch ex As Exception
 …
End Try

6.6 Re-throw exceptions caught in class libraries
In general, do not catch exceptions inside of class libraries unless you are planning on re-
throwing them or throwing a library specific exception that will let client code know that
an application exception has occurred.

6.7 Write User Friendly Error Message
Use complete, user friendly sentences in exception messages, include a trailing period,
and provide enough information for a client to solve the problem.

'*** Wrong
If width <=0 Then

Throw New ArgumentException(“An application error has
occurred.”,“Width”)
End If

'*** Correct
If width <=0 Then

Throw New ArgumentException(“Width can’t be zero. Please
enter a value greater than zero.”,“Width”)
End If

6.8 Protect again revealing sensitive data
Be careful to not expose information that should be regarded as private or sensitive in
exception messages. Do not reveal internal system or applications details, such as stack
traces, SQL statement fragments, user credentials, files names, or database information to
end users. This information can be used by hackers to compromise the security of the
system.

6.9 Keep unhandled exceptions from being displayed to end-users
Include a global exception handler in your Windows Form/WPF or ASP.NET
applications that will catch any exceptions not being handled by else where in code. You

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

26

should log these events to the window event log and display a generic user friendly error
message to end-users.

Window Applications
The following steps will add a global exception handler to a Windows application.

1. Add a new class to your Windows project.

2. Give the class a meaningful name such as “Main”.

3. Replace the code within in the class with the following code snippet

Imports System.Threading
Imports System.Windows.Forms
Imports Microsoft.SqlServer.MessageBox
Imports DCPretrial.Logging

Friend Class Main

 Public Sub New()
 End Sub

 <STAThread()> _
 Shared Sub Main()
 AddHandler Application.ThreadException, AddressOf
GlobalExceptionHandler
 Dim Debugger As New DebugLogger()
 Dim EvtLogger As New EventLogLogger()
 LogManager.Logger.AddLogger(Debugger)
 LogManager.Logger.AddLogger(EvtLogger)
 Application.Run(New frmLogon)
 End Sub

 Private Shared Sub GlobalExceptionHandler(ByVal Sender As
Object, ByVal e As ThreadExceptionEventArgs)
 Dim MsgBox As ExceptionMessageBox = New
ExceptionMessageBox(e.Exception.Message)
 MsgBox.Show(frmLogon)
 End Sub
End Class

4. Replace the code within the Sub Main() main to add as many application loggers
as are required by your application and to also add any application start-up code
that will be needed.

5. Replace the form being instantiated in the Application.Run line with the name of
the main form within your application.

6. Modify the code within the GlobalExceptionHandler to process the exception
being caught.

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

27

Web Applications
Add the following script block the global.asax file inside of your web application to
create a global exception handler.

<%@ Import Namespace="System.Diagnostics" %>

<script language="VB" runat="server">
Sub Application_Error(sender As Object, e As EventArgs)
 'get reference to the source of the exception chain
 Dim ex As Exception = Server.GetLastError().GetBaseException()

 'log the details of the exception and page state to the
 'Windows 2000 Event Log
 EventLog.WriteEntry("Test Web", _
 "MESSAGE: " & ex.Message & _
 "\nSOURCE: " & ex.Source & _
 "\nFORM: " & Request.Form.ToString() & _
 "\nQUERYSTRING: " & Request.QueryString.ToString() & _
 "\nTARGETSITE: " & ex.TargetSite & _
 "\nSTACKTRACE: " & ex.StackTrace, _
 EventLogEntryType.Error)
End Sub
</script>

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

28

7 SECURITY BEST PRACTICES

7.1 Craft with security in mind
Always think about security when writing source code. Don’t assume that only
authorized users will call your routine or use your application. Always think how can I
prevent someone from using my code in ways that I did not intend for it to be used.

7.2 Never trust what you’ve been given
Assume all input is malicious and it source is not trustworthy. Constrain input by
validating it for type, length, format and range and reject everything that does not fit into
that constraint. This should be done at each layer of the application.

7.3 Be careful how and where you store connection strings
Do not store plain text versions of connection strings in any of your source code files,
application configuration files or registry settings. Always encrypt connection strings
and restrict access to them using ACL or some other method of limiting access to
authorized personnel only.

7.4 Use your own credentials when connecting to databases
Do not use application user credentials when connecting to a database, production or
otherwise, unless you are verifying the accessibility and permissions of those accounts.

7.5 Use stored procedures to execute queries
Use stored procedure rather through in-line SQL statements. Besides the performance
benefits of stored procedure over in-line SQL statements, the use of stored procedures
also ensures that input values are checked for type and length. A value outside of the
acceptable range automatically triggers an exception. Parameters are also treated as safe
literal values and not executable code within the database. This protects our system from
SQL Injection attacks.

7.6 Protect SQL Code from injection attacks

If the Software Architect has granted permission to use In-line SQL within your
application, you must filter all string data flowing into and out of your application using
the DCPretrial.Utilities.PSAUtility.RenderSQLStringSafe() method. This will method
will strip out any questionable query syntax from your string variables.

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

29

7.7 Use HtmlEncode to protect against Cross-site Scripting
Use the HttpUtility.HtmlEncode method to encode output if it contains input from the
user, such as input from fields, query strings, and cookies or from other sources, such as
database. Never just echo input back to the user without validating and/or encoding the
data.

Response.Write(HttpUtility.HtmlEncode(“Request.Form[“txtLastName”
])

Note: By default, the DataAccess.GetString() method Html encodes all string values
retrieved from a database field for you.

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

30

8 UNIT TESTING BEST PRACTICES

<< This section will be completed in version 1.5 >>

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

31

9 TEAM FOUNDATION SERVER SOURCE CONTROL BEST
PRACTICES & GUIDANCE

9.1 Getting the latest version of source code
From Source Control Explorer, select the file, right-click and click Get Latest Version.
This downloads a read-only copy of the latest version of the file into the workspace on
your computer.

Note: The Get Latest Version operation does not check out the file and the check out for edit
operation does not do a get. You need to perform both steps individually. This behavior is different
from VSS behavior.

9.2 Files kept and not kept in source control

Files kept in source control:
The following list identifies the key file types that you should add to source control.
These are also the file types that are added when you click Add Solution to Source
Control.

• Solution files (*.sln). Solution files maintain a list of constituent projects,
dependencies information, build configuration details, and source control provider
details.

• Project files (*.csproj or *.vbproj). Project files include assembly build settings,
referenced assemblies (by name and path), and a file inventory.

• Visual Studio Source Control Project Metadata (*.vspscc). These files

maintain project bindings, exclusion lists, source control provider names and
other source control metadata.

• Application configuration files (*.config). XML configuration files contain

project and application specific details used to control your application’s run time
behavior. Web applications use files called Web.config. Non-Web applications
use files called App.config.

Note: At run time, the Visual Studio build system copies App.config to your project’s Bin folder

and renames it as <YourAppName>.exe.config. For non-web applications, a configuration file is not
automatically added to a new project. If you require one, add it manually. Make sure you call it
App.config and locate it within the project folder.

• Source files (*.aspx, *.asmx, *.cs, *.vb, …). Source code files, depending on

application type and language.

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

32

• Binary dependencies (*.dll). If your project relies on binary dependencies such

as third party DLLs, you should also add these to your project within source
control.

Files that should not be added to source control:
The following files are specific to each developer and should therefore not be added to
version control:

• Solution user option files (*.suo). These contain personalized customizations
made to the Visual Studio IDE by an individual developer.

• Project user option files (*.csproj.user or *.vbproj.user). These files contain

developer specific project options and an optional reference path that is used by
theVisual Studio to locate referenced assemblies.

• WebInfo files (*.csproj.webinfo or *.vbproj.webinfo). This file keeps track of a
project's virtual root location. This is not added to source control to allow
individual developers to specify different virtual roots for their own working copy
of the project. While this capability exists, you and all team members are
recommended to use a consistent (local) virtual root location when you develop
Web applications.

• Build outputs. These include assembly dynamic-link libraries (DLLs), interop
assembly DLLs and executable files (EXEs). (Note though that assemblies such
as third-party binaries that are not built as part of the build process should be
placed under version control as described above).

9.3 Checking out code for editing

• From Source Control Explorer, select the file, right-click and click Get Latest

Version. This downloads a read-only copy of the latest version of the file into the
workspace on your computer.

• Right-click the file and click Check Out for Edit.

• Choose your required lock type. Select None to allow other users to check the file

in and out during the period of time you are working on the file. This type of
shared check out is generally recommended because most conflicts should they
arise can be resolved automatically.

Note: That the get latest version operation does not check out the file and the check out for edit
operation does not do a get. You need to perform both steps individually. This behavior is
different from VSS behavior.

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

33

When selecting your lock type, consider the following:

• A shared checkout (None) avoids introducing potential bottlenecks into your

development process by preventing someone else working in the same file.

• You should only lock a file while editing it if you are concerned that there will be

a conflict resulting in a complicated manual merge operation.

• Select the Check Out lock type to prevent other users from checking out and
checking in the file. This option prevents other people from editing the file which
could represent a potential bottleneck to your development process. This option
ensures that you can apply your changes back to the source control database
without the possibility of other changes having been made to the file by other
people.

• Select the Check In lock type to allow other users to check out the file but

prevent them from checking it in. Again, this option ensures that you will be able
to check-in your edits without conflicts.

9.4 Checking in modified code

• In Source Control Explorer, navigate in the Folders list to the folder associated
with the items that you want to check in.

• In the lists of items to the right of the Folders section, right-click the items that
you wish to check in, and choose Check In Pending Changes. The Check In -
Source Files dialog box appears.

• In the Source Files channel, select the items that you wish to check in, and type
any applicable comments in the Comment text box. This should include work
order number if the change is related to work order number

• If these items are associated with a Team Foundation work item, click the Work
Items channel, and select the items that you are checking in.

9.5 Deleting code from Source Control

Do not delete code out of Source Control without first checking with Team Foundation
Source Control Server administrator.

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

34

9.6 Sharing shelved code

To shelve a source code for sharing code with a team member, perform a Get Latest
operation to synchronize your workspace with the latest server version and then build
your application to ensure that it compiles. Shelve the source using the Source Control
Explorer. The team member who has been handed off the code then needs to unshelve
the code.

Shelving is useful when you have work in progress that is to be completed by another
team member. You can then shelve your changes to make a handoff easier. By
synchronizing the latest code, you get an opportunity to incorporate changes to source
files that have been made outside of your workspace.

9.6.1 Shelving working code
• In Source Control Explorer, right-click, and choose Shelve Pending Changes.

• In the Shelve - Source Files dialog box, type the shelveset name, for example

shelvetest in the Shelveset name box.

• In the Comment box, type Testing my shelveset, and then click Shelve.

• The files and folders are copied to the source control server and are available
for other team members to unshelve.

When the other team member unshelve a shelveset, Team Foundation restores
each shelved revision into the destination workspace as a pending change as long
as the revision does not conflict with a change that is already pending in the
workspace.

9.6.2 Un-shelving working code
• In Visual Studio 2005 Team System, click File, point to Source Control, and

then click Unshelve.

• In the Owner name box, type the shelveset creator's name (for example,

ADVENTUREWORKS\JuanGo or simply juango) and then click Find.

• In the Results pane, select the shelveset you want to unshelve into your
workspace, and then click Details.

• If you want to delete the shelveset from the Team Foundation source control

server, deselect the Preserve shelveset on server option.

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

35

• Optionally deselect the Restore work items and check-in notes option if you
do not want to have the work items and check-in notes associated with the
shelveset restored.

• When the Details dialog box appears, select the shelveset or shelveset items

you want to unshelve into your workspace, and then click Unshelve.

9.6.3 Deleting shelved code

If you want to delete the shelveset from the Team Foundation source control server,
deselect the Preserve shelveset on server option.

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

36

10 GENERAL CODING BEST PRACTICES

10.1 Turn on Option Strict, Option Explicit and Option Compare for all projects
Setting these complier option help to ensure that source code function as expected and
difficult to debug run-time errors are caught while you are still developing code.

10.2 Don’t declare multiple variables on the same line
Declare one variable per line of code instead of combining multiple declarations on a
single line of code.

'*** Wrong
Dim x As Integer, Name As String, Salary As Decimal

'*** Correct
Dim x As Integer
Dim Name As String
Dim Salary As Currency

10.3 Never define public instance fields
Never define public instance fields. Instead, use a private field and wrap it inside a
public property so that you can validate the incoming value before it’s assigned to the
private field. Unless the enclosing type is sealed, consider whether the property should
be marked as virtual.

 ‘***Wrong
Public Name as String

‘***Correct
Private m_Name as String

Public Property Name() As String
 Get
 Return m_Name
 End Get

Set (ByVal Value as String)
 If String.IsEmptyOrNull(Value) Then
 Throw New ArguementNullException(“Invalid
Name”)
 End If
 m_Name = Value

End Set
End Property

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

37

10.4 Avoid having multiple statements on one line
Don’t include multiple statements on a single line because lines containing single
statements make the code more readable and enable you to add a comment for each
individual variable.

‘***Wrong
x = 1: y = 1

‘***Correct
x = 1 ‘(comment here)
y = 1 ‘(comment here)

10.5 Don’t code single-statement If blocks
Avoid single-line If statements. Always close an If statement with an End If keyword.
By doing so, it’s easier to add remarks and other statements in the If block.

 ‘***OK
If x > 0 Then y = 0

‘***Better
If x > 0 Then
 y = 0
End If

10.6 Use the AndAlso and OrElse instead of the And and Or operators
Use AndAlso and OrElse operators when combining Boolean conditions because these
operators perform better than And and Or operators, which should be reserved for bit-
field manipulation.

‘***Wrong
If x > 0 And y < 10 Then Console.Write(“ok”)
‘***Correct
If x > 0 AndAlso < 10 Then Console.Write(“ok”)

‘Use Or instead of OrElse because Increment function modifies its
‘argument.
If x > 0 Or Increment(y) > 10 Then Consold.Write (“ok”)
…
Function Increment(ByRef n As Integer) As Integer
 n += 1
 Return n
End Function

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

38

10.7 Don’t compare Boolean types to true/false values
Avoid comparisons with true and false Boolean values.

‘***Wrong
Sub PerformTask(ByVal condition1 As Boolean, ByVal condition2 As
Boolean)
 If condition1 = True then
 …
 ElseIf condition2 = False Then
 …
 End If

‘***Correct
Sub PerformTask(ByVal condition1 As Boolean, ByVal condition2 As
Boolean)
 If condition1 Then
 …
 ElseIf Not condition2 Then
 …
 End If
End Sub

10.8 Use direct assignments to set Boolean types
Use a direct assignment of the result of a Boolean expression instead of an
If…Then…Else block.

‘***Wrong: too verbose
Dim ok As Boolean
If x > 0 Then
 ok = True
Else
 ok = False
End if

‘***OK
Dim ok as Boolean = (x > 0)

10.9 Avoid the IIF function
Avoid using the IIF function in time-critical code or if one of its operands is a function
call. Instead use an explicit If…Then…Else block.

‘***Wrong
Dim s As String = IIf(Name <> “”, Name, getUsername())

‘***OK
Dim s As String = IIf(Name <>””, Name, “Unknown”)

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

39

‘(Next code assumes that names is an array of strings.)
‘***Wrong: uses IIf inside a loop
For I As Integer = 0 To names.length – 1
 Console.WriteLin(IIf(names(i) <> “”, names(i), “Unknown”))
Next

‘Correct
For I As Integer = 0 To names.Length – 1
 If names(i) <> “” Then
 Console.WriteLine(names(i))
 Else
 Console.WriteLine(“Unknown”)
 End If
Next

10.10 Testing and comparing object types
Call the DCPretrial.Utilities.PSAUtilities.AreSameType() when you want to determine if
two types are actually, really of the same type. The TypeOf function will return true if
object1 is of the same type as object2 or any object that descends from that object2. The
AreSameType() will return turn when the two object are exactly of the same type.

If PSAUtilities.AreSameType(Client1, Client2) Then
 …
End Sub

10.11 Favor Select Case blocks to test for multiple values
Favor a Select Case block instead of an If statement when testing the same variable
against four or more values or ranges of values.

‘***Wrong
If x = 1 OrElse x = 3 OrElse (x >=6 AndAlso x <= 9) Then
 Console.WriteLine(“OK”)
End If

‘***Correct
Select Case x
 Case 1, 3, 6 To 9
 Console.WriteLine(“OK”)
End Select

10.12 Never code multiple statements on a Case block line
Never include multiple statements on the same line as the Case keyword. It is acceptable
to have a Case clause followed by a single statement on the same line, but only if all the
Case clauses in the Select Case block are followed by a single statement.

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

40

‘***Wrong
Select Case x
 Case 1: y = 2
 Case 2: y = 5: z = 8
End Select

‘***Correct
Select Case x
 Case 1
 y = 2
 Case 2
 y = 4
 z = 8
End Select

‘***Also correct: all Case blocks contain one statement.
Select Case x
 Case 1: y = 2
 Case 2: y = 5
 Case 3: y = 8
End Select

10.13 Put most likely to occur condition at top of Select Case statement
Always check the most frequent values near the top of a Select Case statement because
this arrangement improves execution speed as values in the block are usually tested in the
order they appear.

10.14 Declare controlling variable in For and For each loops
Always declare the controlling variable of a For and For Each loop inside the loop. This
syntax is more concise and, above all, ensures that the variable isn’t accidentally used
after the last iteration of the loop.

‘***Wrong
Dim I As Integer
For i = 1 To 100
 …
Next
Dim p As Person
For each p In colPersons
 …
Next

‘***Correct
For I As Integer = 1 to 100
 …
Next
For Each p As Person in colPersons
 …

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

41

Next

10.15 Don’t use an array’s length property to control For loops
Always explicitly test the controlling variable in For loops against the array’s length
property. Don’t attempt to optimize code by storing the Length property’s value in
temporary variable

‘***Wrong: uses a function in a Microsoft.VisualBasic library.
Dim arr(99) As Integer
For i As Integer = 0 To Ubound(arr
 …
Next
‘***Wrong: caches upper limit in a variable
Dim arr(99) As Integer
Dim maxIndex As Integer = arr.Length – 1
For I As Integer = 0 To maxIndex
 …
Next

‘***Correct
Dim arr(99) As Integer
For I As Integer = 0 To arr.Length – 1
 …
Next

10.16 When to use For … Next and For Each …Next loops
For … Next loops are usually faster when working with regular arrays. For Each … Next
are usually faster when with collections.

10.17 Doing For loops when the controlling variable are not sequential

By coupling For Each loops with the ability to create arrays on the fly, you can execute a
block of statements with values for a controlling variables that aren’t necessarily in
sequence.

Dim isPrime as Boolean = True

For each var as Integer in New Integer() {2, 3, 5, 7, 11, 17, 19}
 If (number Mod var) = 0 isPrime = false: exit For
Next

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

42

10.18 Use the & operator to concatenate strings
Use the & operator to concatenate strings instead of the + operator. The + operator is
only supported for historical reasons. This guidance makes for more readable and less
ambiguous code.

10.19 When to use char variables
Use Char variables rather than String variables if you are sure you need to store only
individual characters. Char variables are more efficient because they take less memory
than a 1-char String object and because they are value types rather than reference types.

10.20 Initialize string types to String.Empty
Explicitly initialize string fields and variables to a String.Empty. Explicit assignment
avoids NullreferenceException errors when referencing the string and simplifies code
because the string doesn’t have to be tested against null.

‘***Wrong
Dim x As String
…
If Not X Is Nothing Then
 ‘Must check for Nothing before processing the string
End If

‘***Correct
Dim x As String = “”
‘*** BEST !!!
Dim x As String = String.Empty
…
‘Process the string (no need to check it first).

10.21 How to split long string expressions

When splitting a long string expression over multiple lines, have each line after the first
on begin with the concatenation operator. This coding style makes it more evident that
the statement is split over more than one line even if the code is too long to fit in the
editor window.

Dim s As String = “A long string expression “ _
& “that is split over two lines”

10.22 Looping over all the characters of a string
Use the Chars property in a For loop instead of a more elegant, but slower For Each
loop.

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

43

Dim companyName As String = “Code Architects Srl”

‘***OK
For Each c As Char In CompanyName
 Console.Write(c)
Next

‘***Better: nearly twice as fast
For index As Integer = 0 To CompanyName.Length –1
 Console.Write(companyname.Chars(index))
Next

10.23 Avoid passing types by reference
Avoid defining methods that take arguments passed by reference – that is, by means of
the ByRef keyword – if the argument is a reference type. The only exception to this rule
is when the method must be allowed to set the parameter to a null object reference or to
make it point to a different object.

To help you better understand when to pass an argument by reference, it is essential that
you understand the difference between passing an argument by value or by references as
well as the implications of passing reference types rather than value types. There are four
cases in total:

a. Passing value types by value – A copy of the value type is created and passed to
the method. This argument-passing style is commonly used and exhibits no side
effects because the called method can’t change any member of the original value
type.

b. Passing reference types by value – A copy of the pointer to the object is created
and passed to the method. In most cases, this is the correct way to pass a
reference type: the method can use the pointer to access and change the fields and
properties of the object. If the method changes the pointer (for example, it assigns
it a null value or makes it point to a different instance), the original object variable
isn’t affected.

c. Passing value types by reference – A pointer to the original value is passed to the
method. When a value type argument is passed by reference, the code in the
method can modify the properties in the value type. This case is less common
than case a, and it’s mostly used in functions when you want to return additional
information to the caller or in Pinvoke/COM Interop scenarios.

d. The address of the pointer to the object is passed to the method – This is the
least common scenario: the called method can change the object’s fields and
properties, as in case b, plus all the changes to the pointer are reflected in the
original object variable. For example, if the method sets the argument to a null
object reference, the original object variable is set to a null reference as well.

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

44

 ‘***Wrong: the method doesn’t need to modify the pointer.
Sub ClearProperties(ByRef p As Person)
 p.Firstname = Nothing
 p.LastName = Nothing
End Sub

‘***Correct: the object is passed by value.
Sub ClearProperties(ByVal p As Person)
 p.Firstname = Nothing
 p.LastName = Nothing
End Sub

‘***Correct: the method assigns a new object reference
Sub ClearProperties(ByRef p As Person)
 p = New Person
End Sub

10.24 Use method overloading to reduce boxing
Provide overloaded versions of the same method if the method can take arguments of
different types rather than using a single method that takes Object arguments. This
guideline helps to avoid the boxing operation that would occur if a value-type argument
were passed to an Object parameter.

It is essential that the overloaded methods that serve value types don’t delegate to the
more generic method that takes an object; otherwise, you would have a boxing operation
anyway.

Public Sub WriteLine(ByVal arg as Long)
 ‘This version serves Short, Integer and Long Arguments.
End Sub
Public Sub WriteLine(ByVal arg as Double)
 ‘This version serves Single and Double arguments.
End Sub
Public Sub WriteLine(ByVal arg as Decimal)
 ‘This version serves Decimal arguments.
End Sub
Public Sub WriteLine(ByVal arg as DateTime)
 ‘This version serves DateTime arguments.
End Sub
Public Sub WriteLine(ByVal arg as String)
 ‘This version serves String arguments.
End Sub
Public Sub WriteLine(ByVal arg as Object)
 ‘This version serves arguments of any other type.
End Sub

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

45

10.25 Use method overloading to reduce the number of arguments
Provide overloaded versions of the same method if the method can take a variable
number of arguments to reduce the number of arguments that clients have to pass in the
most common scenarios.

Public Sub FormatText(ByVal text As String)
 FormatText(text, 0, Nothing)
End Sub

Public Sub FormatText(ByVal text As String, ByVal indent As
Integer)
 FormatText(txt, indent, Nothing)
End Sub

Public Sub FormatText(ByVal text As String, ByVal indent As
Integer, ByVal formatter As Object)
 ‘Process the format text request.
 …
End Sub

10.26 Use method overloading rather than relying on optional parameters
Use method overloading to support methods with different numbers of arguments rather
than relying on optional parameters for public methods in public types. If the method
really requires a variable number of arguments and using overloading isn’t practical, use
a ParamArray parameter.

‘***Wrong: a public method with an optional argument.
Pubic Class SampleType
 Public Sub PerformTask(ByVal name as String, _

Optional ByVal pwd as String = Nothing)
 ….
 End Sub
End Class

‘***Correct: method overloading is used instead.
Public Class SampleType
 Public Sub Performtask(ByVal name as String)
 ‘Invoke the more complete overload
 PerformTask(name,Nothing)
 End Sub
 Public Sub PerformTask(ByVal name as String, ByVal pwd as
String)
 …
 End Sub
End Class

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

46

10.27 Validate all arguments before using them
Validate all arguments being passed in before utilizing them in a method. This should
occur at the top of a method before any local variables are declared and instantiated.
Throw an ArgumentNullException or ArgumentException for each argument that is null
or not within an acceptable range. Use the Message property to explain why the argument
has been rejected.

Sub PerformTask (ByVal text as String, ByVal width as Integer)
 ‘Validate all arguments before proceeding
 If text Is Nothing Then
 Throw New ArgumentNullException(“text”)
 ElseIf width <=0 Then
 Throw New ArgumentException(“Width can’t be Zero.
Please supply a value greater than Zero.”,“Width”)
 End If

….
End Sub

10.28 Have a single exit point for all methods
Methods should have a single exit point. Sub procedures (VB) should have no Exit Sub
statement. Methods that return values should contain only one Return statement. The
reason for this practice is because having a single exit point is considered to be good
design and enables you to add tracing statements or assertions easily. However, if special
cases can be dealt with at the top of the method, it is OK to exit earlier by means of an
additional Exit Sub or Return (VB) statement.

Public Function LoadClientNames(ByVal ClientID As Integer) As
Datatable
If IsNothing(ClientID) OrElse ClientID <= 0 Then
 Throw New ArgumentException("ClientID must be greater than
Zero", "ClientID")
End If

Dim RetValue As DataTable = Nothing
Dim Clients As New Prism.Client

 Try
 RetValue = Clients.GetNames(ClientID)
 Catch ex As PSAException
 …
 Catch ex As Exception
 ..
 End Try

 Return RetValue
End Function

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

47

10.29 Use the Return keyword to return values from a method or property
Return a value to the caller by means of the Return keyword instead of assigning the
return value to the implicit local variable named after the current property or method,
because the return keyword often enables the computer to optimize your code more
efficiently.

‘***Wrong
Function GetUserName() As String
 GetUsername = m_UserName
End Function

‘***Correct
Function GetUserName() As String
 Return m_UserName
End Function

In addition, you can also use the Return keyword (without any argument) to replace an
Exit Sub statement.

Sub PerformTask()
 ‘***OK
 If x = 0 Then Exit Sub

 ‘***Better
 If x = 0 Then Return
End Sub

10.30 Methods and properties that return strings
When defining a method or property that returns a string, return an empty string rather
than a null object reference when the result string has no characters. This simplifies the
task of the caller code, which can be used to return the string without having to test it first
for a Nothing.

Function Spaces(ByVal n as Integer) As String
 If n <=0 Then
 Return String.Empty ‘Empty string rather than nothing
 Else
 Return new String (“ “c, n)
 End If
End Function

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

48

10.31 Use the Get-prefixed to name methods that return values
Use the Get prefix for methods whose primary function is to evaluate and return a value;
the portion of the name following Get should describe what the method returns.

GetClientName()
GetClientDrugTestResults()
GetUserSecurityProfile()

10.32 Get-prefixed methods matching property names
Don’t have a type expose a method named GetPropertyName, where PropertyName is
the name of a property exposed by the same name. The reason for this is because
exposing a property and a Get-prefixed method that apparently returns the same
information can be very confusing to users and should be avoided.

‘*** Wrong
Public Function GetDrugTestStatus() As Integer
 ...
End Function

Private _DrugTestStatus As Integer
Public Property DrugTestStaus() As Integer
 Get
 ...
 End Get
 Set(ByVal value As Integer)
 ...
 End Set
End Property

‘*** Right
Private _DrugTestStatus As Integer
Public Property DrugTestStaus() As Integer
 Get
 ...
 End Get
 Set(ByVal value As Integer)
 ...
 End Set
End Property

10.33 Set-prefixed methods
Consider the opportunity to define one or more Set-prefixed methods that take arguments
and that assign multiple properties in one shot.

Public Sub SetCustomerData(ByVal id As Integer, ByVal name As
String, _

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

49

 ByVal address as String, ByVal city As String, ByVal
country As String)
 …
End Sub

10.34 Consider using parentheses to return the results of an expression
When returning the results of an expression from a method, optionally enclose the
expression in parentheses if it helps readability. Don’t use parentheses when returning a
single value.

‘***OK
Return (123)
Return x = 0

‘***Better
Return 123
Return (x = 0)

10.35 Don’t use properties as methods or methods as properties.
Properties set or return values, methods perform actions. Don’t use a property as a
method and don’t use a method as property. In other words, don’t use a property to
perform an action or task other than setting or retrieving values. In other all other cases
use a method (either function or sub).

‘*** Wrong
Public Property BlankOutValues()
 …
End Sub

Public Sub SetClientName(ByVal NewName as String(
 …
End Sub

‘***Right
Public Sub Clear()
 …
End Sub

Public Property Name() As String
 Get
 …
 End Get
 Set(ByVal value As String)
 …
 End Set
 End Property

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

50

10.36 Use Enums to return result status codes
Use Enums to pass the result status to callers rather a result property.

‘***Wrong: Don’t use Property to return result statuses
Customer.Update()
If Customer.ResultCode = -1 then

…
Elseif Customer.ResultCode = 1 then

…
End if

‘***Right: Use an Enum to return the status code
Dim Result as Customer.UpdateStatus
Result = Customer.Update()
If Result = NoRecordsUpdate then

…
Elseif result = TooManyRecords then

…
Elseif result = UpdateSuccessful then

…
End if

10.37 Return Zero-element Arrays over Un-initialized arrays
Visual Basic.Net has two types of empty arrays: un-initialized arrays and arrays that
contain zero elements. In the first case an array variable is set to Nothing and in the
second, the array variable is initialized to an array that has no elements. The main
advantage of returning zero-element arrays over un-initialized arrays is that with zero-
element arrays callers do not test the array variable for being nothing before referencing
it. The code example below shows how to create an zero-element array.

‘*** declaring an array of no elements.
Dim MyArray(-1) as Integer

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

51

11 ASP.NET BEST PRACTICES

11.1 Use Model-View-Presenter Pattern
To promote the use of the Model-View-Presenter pattern, only presentation markup and
JavaScript/VBScript should be placed within a form’s .aspx page. All server side code
should be placed in a code-behind file. Neither the form’s .aspx page nor its code-behind
file should make calls in the data access layer or directly into the database.

11.2 Validate input on both the client and server
Do not rely on client-side validation as your only input validation mechanism because it
can be easily by passed by hackers into your system. You should valid all input both
client-side and server-side. Use client-side validation only to reduce round trips and to
improve the user experience.

11.3 Set the ViewStateUserKey property on all web pages
Place the following line of code inside of the Page.Init method of all web pages you
develop. Setting this property increases the security of the ViewState mechanism and
prevents one-click attacks from malicious users10.

Me.ViewStateUserKey = Session.SessionID

11.4 Redirect using Server.transfer or Server.Execute
Use the Server.Transfer or Server.Execute methods to redirection execution to anther
page in the same ASP.Net Application. Use the Response.Redirect method to redirect
execution to page belonging to another web application. The difference between the two
is that the Server performs the redirection entirely on the server without having to go
back to the client for a roundtrip and the Response does not.

11.5 Favor the ViewState dictionary over hidden fields

Use the ViewState dictionary to persist variable values between postbacks to the same
page. The ViewState dictionary is a hashed and encrypted hidden field that works with all
browsers if the end user has disabled cookie support. Only use hidden fields when
posting data between different pages.

10 In this kind of attack, hackers manually builds an HTML page or use the HTML page received by
another user to submit invalid data to the server.

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

52

12 DATA ACCESS BEST PRACTICES

12.1 Access the database through the Agency’s Data Access Layer
Use the Agency’s standard data access layer (DCPretrial.DataAccess) to perform all of
your database access operations. The data access layer contains the code needed to
execute stored procedure against any of the Agency’s databases and to return data in
object format support by ADO.NET.

12.2 Don’t use Datasets to pass data between application tiers.
Because Datasets are heavy components to marshal you should not use them to pass data
between application tiers. Use either DataTables (type or un-typed), ArrayLists, XML or
serialized data classes (aka Data Transfer Objects) since they are generally lighter to
marshal than Datasets.

12.3 Data Reader vs. DataSet
Read database data into a DataSet in the following cases

a. You must update the database and you want to implement an optimistic update
strategy

b. You must account for relations existing in different tables.
c. You are binding data to one or more Windows Forms controls.
d. You are binding data to two or more Web forms controls.
e. You need to store data between consecutive postbacks in an ASP.NET application
f. You need to pass data between layers in a multitiered application
g. You want to cache data, for example, to reduce traffic on a slow network and

improve database performance and scalability.

In all other cases, use a DataReader for processing data coming from a database. In
general, processing data by means of a DataReader is faster than using a Data-Adapter to
fill a DataTable in a DataSet.

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

53

13 SQL REPORTING BEST PRACTICES

13.1 Report Standard Fonts
The table below outlines standard fonts used in specific sections of PSA reports.

Section Sub Section Font Type Font

Size
Sample

Header Agency Title Times New Roman;
Bold;All CAPS

14 SAMPLE

Header Division Title Times New Roman 12 Sample
Header Agency

Information
Times New Roman 10 Sample

Header Report Title Times New Roman;Bold 14 Sample
Body Column Header Times New Roman;Bold 10 Sample
Body Body Label Times New Roman;Bold 10 Sample
Body Body Text

(Form Letter)
Times New Roman 11 or

12*
Sample

Body Body Text
(Client and
Summary
Reports)

Times New Roman 10 Sample

Body Group Heading Times New Roman;Bold 11 Sample
Footer Footnote/Page

Number
Times New Roman 8 Sample

*Font size for Form Letters will depend on space available. When possible, 12 point font
should be used unless that will cause the report to expand over 1 page.

13.2 Report Margins
Standard margins for all reports will be: 0.5 inch top; 0.5 inch left; 0.5 inch right; 0.5
inch bottom. To set this property in SQL Reporting Services, go to Menu > Report >
Report Properties > Layout Tab.

13.3 Naming conventions
Report names should reflect the title of the report as close as possible. For example, the
file for “Address Verification” should be AddressVerification.rdl, “Contact Report”
should be Contact.rdl, etc.

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

54

When creating database stored procedures for use only in reports, use the prefix “Rpt” to
name the stored procedure. For example, a stored procedure used to generate
Appointment Slips can be named spRptGetAppointmentSlip.

13.4 Using Reporting Services Embedded Code
It is possible to create custom functions in the Report Properties>Code Window shown
below.

Code displayed in this window can be used in a variety of ways to display data and
calculated fields. When writing code in this area of Reporting Services, follow coding
standards discussed earlier in this document.

13.5 Report Readability (for Summary Reports)
In an effort to make Summary Reports more readable, it is useful to implement
background shading for alternate rows. This can be accomplished by clicking on the row
in the Data Table that contains the details of the report, and setting its BackgroundColor
property as follows using an expression:

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

55

13.6 Naming Data Sources and Data Sets
When creating a Data Source to be used in a PRISM report, the Data Source name will be
“PRISMDataSource”. If creating more than one Data Set for a report, each Data Set
should have a meaningful name to reflect the data being retrieved. For example, when
the stored procedure spRptUserInfoHeader is used to bring back report header info, name
the Data Set “HeaderInfo”.

13.7 Deploying Reports
Three important properties should be properly set when deploying reports:

1) TargetServerURL = http://psa-sqlrpting/ReportServer
2) TargetReportFolder = PRISMReports/PRISM

a. The failure to set this report property correctly will create more effort to
verify reports are being referenced properly in the code where they are
called.

3) TargetDateSourceFolder = DataSources/PRISM
a. The failure to set this report property correctly may require additional

effort to confirm deployed reports are referencing the correct data source.

13.8 Use Visual SourceSafe
Visual SourceSafe provides seamless versioning support for the development
environment and is easy to integrate with SQL Server Reporting Services.

.NET Coding Standards & Best Practices 1.0
D.C. Pretrial Services Agency
11/07/07

56

13.9 Use Shared Data Sources
The use of shared data sources will provide for a centralized storage of database
credentials. This will decrease the amount of work required to deploy reports throughout
deployment, testing and production environments.

In addition, setting the “Overwrite Data Sources” option in the Report Properties tab to
“False” will prevent a development data source from overwriting a production data
source.

13.10 Use Views and Stored Procedures
Using views and stored procedures for data sets reduces effort in maintaining the reports
should query selection or field selection criteria change.

13.11 Create a backup of the Encryption Key
In order to protect all of the reports and data sources that have been deployed to the
Report Server, it helps to create a backup of the Encryption Key because the sensitive
information stored in the Report Server can become corrupt and no longer accessible.
This leads to several problems including the inability to view or decrypt report
credentials.

13.12 Review Reports Before Deploying
Before deploying reports, it is important to confirm several tasks:

1) Confirm the queries are optimized.
2) Confirm reports look as expected when rendered to a different format. The same

report can look different when rendered as a .pdf, .tif or .html file.
3) Confirm data is formatted properly and grouping is functioning where applicable.

13.13 Use folders and Descriptions to Organize Reports

Placing the reports in a directory structure can alleviate the burden of organizing reports
as the quantity grows and becomes more involved to maintain. For PRISM, separate
directories are created for Reports and Data Sources, and subdirectories for PRISM and
PRISM Juvenile elements under each.

13.14 Assign Security at the Folder Level

Assigning security at the folder level and letting the folder contents inherit security
permissions will allow for easier maintenance of security features as the quantity of
reports continues to grow. In addition, it is strongly recommended to assign security
rights to domain groups instead of individual users.

